The 8-bit Intel 8051 family provides a dedicated bit-addressable memory space (addresses 20h-2Fh in internal RAM), giving 128 directly addressable bits. Used them for years. I’d imagine many microcontrollers have bit-width variables.
bit myFlag = 0;
Or even return from a function:
bit isValidInput(unsigned char input) { // Returns true (1) if input is valid, false (0) otherwise return (input >= '0' && input <= '9'); }
Nothing like that in ARM. Even microcontrollers have enough RAM that nobody cares, I guess.
ARM has bit-banding specifically for this. I think it’s limited to M-profile CPUs (e.g. v7-M) but I’ve definitely used this before. It basically creates a 4-byte virtual address for every bit in a region. So the CPU itself can’t “address” a bit but it can access an address backed by only 1 bit of SRAM or registers (this is also useful to atomically access certain bits in registers without needing to use SW atomics).
We could go the other way as well: TI’s C2000 microcontroller architecture has no way to access a single byte, let alone a bit. A Boolean is stored in 16-bits on that one.
And, you can have pointers to bits!
pragma(pack) {
int a:1, b:1, … h:1;
}
IIRC.
boolean bloat
I first thought you wrote boolean float, not sure if that’s even worse.
boolean root beer float
Are you telling me that no compiler optimizes this? Why?
It would be slower to read the value if you had to also do bitwise operations to get the value.
But you can also define your own bitfield types to store booleans packed together if you really need to. I would much rather that than have the compiler do it automatically for me.
Well there are containers that store booleans in single bits (e.g.
std::vector<bool>
- which was famously a big mistake).But in the general case you don’t want that because it would be slower.
Why is this a big mistake? I’m not a c++ person
The mistake was that they created a type that behaves like an array in every case except for
bool
, for which they created a special magical version that behaves just subtly different enough that it can break things in confusing ways.Could you provide an example?
Consider what the disassembly would look like. There’s no fast way to do it.
It’s also unnecessary since 8 bytes is a negligible amount in most cases. Serialization is the only real scenario where it matters. (Edit: and embedded)
In embedded, if you are to the point that you need to optimize the bools to reduce the footprint, you fucked up sizing your mcu.
CPUs don’t read one bit a a time.
They do, that’s the optimisation.
We need to be able to express 0 and 1 as integers so that functionality is just being overloaded to express another concept.
Wait until the person who made this meme finds out about how many bits are being wasted on modern CPU architectures. 7 is the minimum possible wasted bits but it would be 31 on every modern computer (even 64b machines since they default to 32b ints).
In the industrial automation world and most of the IT industry, data is aligned to the nearest word. Depending on architecture, that’s usually either 16, 32, or 64 bits. And that’s the space a single Boolean takes.
That’s why I primarily use booleans in return parameters, beyond that I’ll try to use bitfields. My game engine’s tilemap format uses a 32 bit struct, with 16 bit selecting the tile, 12 bit selecting the palette, and 4 bit used for various bitflags (horizontal and vertical mirroring, X-Y axis invert, and priority bit).
Bit fields are a necessity in low level networking too.
They’re incredibly useful, I wish more people made use of them.
I remember I interned at a startup programming microcontrollers once and created a few bitfields to deal with something. Then the lead engineer went ahead and changed them to masked ints. Because. The most aggravating thing is that an int size isn’t consistent across platforms, so if they were ever to change platforms to a different word length, they’d be fucked as their code was full of platform specific shenanigans like that.
/rant
Yeah. I once had to do stuff to code that had bit-fields like that and after a while, realised (by means of StackOverflow) that that part is UB and I had to go with bitwise operations instead.
Undefined Behavior…?
Ok, I recalled wrong, it was unspecified
Good rant.
I always use stdint.h so that my types are compatible across any mcu. And it makes the data type easily known instead of guessing an i t size
Or you could just use Rust
typedef struct { bool a: 1; bool b: 1; bool c: 1; bool d: 1; bool e: 1; bool f: 1; bool g: 1; bool h: 1; } __attribute__((__packed__)) not_if_you_have_enough_booleans_t;
Or just
std::bitset<8>
for C++. Bit fields are neat though, it can store weird stuff like a 3 bit integer, packed next to booleansThat’s only for C++, as far as I can tell that struct is valid C
You beat me to it!
This was gonna be my response to OP so I’ll offer an alternative approach instead:
typedef enum flags_e : unsigned char { F_1 = (1 << 0), F_2 = (1 << 1), F_3 = (1 << 2), F_4 = (1 << 3), F_5 = (1 << 4), F_6 = (1 << 5), F_7 = (1 << 6), F_8 = (1 << 7), } Flags; int main(void) { Flags f = F_1 | F_3 | F_5; if (f & F_1 && f & F_3) { // do F_1 and F_3 stuff } }
3GPP has an interesting way of serialising bools on the wire with ASN.1
NULL OPTIONAL
meaning only the type would be stored if true, otherwise it won’t be set at all
Pl/1 did it right:
Dcl 1 mybools, 3 bool1 bit(1) unaligned, 3 bool2 bit(1) unaligned, … 3 bool8 bit(1) unaligned;
All eight bools are in the same byte.
I swore I read that mysql dbs will store multiple bools in a row as bit maps in one byte. I can’t prove it though
SIMD Might be the term youre looking for (Single Input Multiple Data)
Depending on the language
And compiler. And hardware architecture. And optimization flags.
As usual, it’s some developer that knows little enough to think the walls they see around enclose the entire world.
I don’t think so. Apart from dynamically typed languages which need to store the type with the value, it’s always 1 byte, and that doesn’t depend on architecture (excluding ancient or exotic architectures) or optimisation flags.
Which language/architecture/flags would not store a bool in 1 byte?
Apart from dynamically typed languages which need to store the type with the value
You know that depending on what your code does, the same C that people are talking upthread doesn’t even need to allocate memory to store a variable, right?
How does that work?
I think he’s talking about if a variable only exists in registers. In which case it is the size of a register. But that’s true of everything that gets put in registers. You wouldn’t say
uint16_t
is word-sized because at some point it gets put into a word-sized register. That’s dumb.
things that store it as word size for alignment purposes (most common afaik), things that pack multiple books into one byte (normally only things like bool sequences/structs), etc
things that store it as word size for alignment purposes
Nope. bools only need to be naturally aligned, so 1 byte.
If you do
struct SomeBools { bool a; bool b; bool c; bool d; };
its 4 bytes.
sure, but if you have a single bool in a stack frame it’s probably going to be more than a byte. on the heap definitely more than a byte
but if you have a single bool in a stack frame it’s probably going to be more than a byte.
Nope. - if you can’t read RISC-V assembly, look at these lines
sb a5,-17(s0) ... sb a5,-18(s0) ... sb a5,-19(s0) ...
That is it storing the bools in single bytes. Also I only used RISC-V because I’m way more familiar with it than x86, but it will do the same thing.
on the heap definitely more than a byte
Nope, you can happily
malloc(1)
and store a bool in it, ormalloc(4)
and store 4 bools in it. A bool is 1 byte. Consider this a TIL moment.c++ guarantees that calls to malloc are aligned https://en.cppreference.com/w/cpp/memory/c/malloc .
you can call
malloc(1)
ofc, but callingmalloc_usable_size(malloc(1))
is giving me 24, so it at least allocated 24 bytes for my 1, plus any tracking overheadyeah, as I said, in a stack frame. not surprised a compiler packed them into single bytes in the same frame (but I wouldn’t be that surprised the other way either), but the system v abi guarantees at least 4 byte alignment of a stack frame on entering a fn, so if you stored a single bool it’ll get 3+ extra bytes added on the next fn call.
computers align things. you normally don’t have to think about it. Consider this a TIL moment.
Fucking lol at the downvoters haha that second sentence must have rubbed them the wrong way for being too accurate.
Then you need to ask yourself: Performance or memory efficiency? Is it worth the extra cycles and instructions to put 8 bools in one byte and & 0x bitmask the relevant one?
And you may ask yourself: where is my beautiful house? Where is my beautiful wife?
- Soon to be
- That’s me
Talking heads - once in a lifetime
Letting the days go by, let the water hold me down
A lot of times using less memory is actually better for performance because the main bottleneck is memory bandwidth or latency.
It’s not just less memory though - it might also introduce spurious data dependencies, e.g. to store a bit you now need to also read the old value of the byte that it’s in.
It might also introduce spurious data dependencies
Those need to be in the in smallest cache or a register anyway. If they are in registers, a modern, instruction reordering CPU will deal with that fine.
to store a bit you now need to also read the old value of the byte that it’s in.
Many architectures read the cache line on write-miss.
The only cases I can see, where byte sized bools seems better, are either using so few that all fit in one chache line anyways (in which case the performance will be great either way) or if you are repeatedly accessing a bitvector from multiple threads, in which case you should make sure that’s actually what you want to be doing.
Yep, and anding with a bit ask is incredibly fast to process, so it’s not a big issue for performance.
Sounds like a compiler problem to me. :p
I have a solution with a bit fields. Now your bool is 1 byte :
struct Flags { bool flag0 : 1; bool flag1 : 1; bool flag2 : 1; bool flag3 : 1; bool flag4 : 1; bool flag5 : 1; bool flag6 : 1; bool flag7 : 1; };
Or for example:
struct Flags { bool flag0 : 1; bool flag1 : 1: int x_cord : 3; int y_cord : 3; };
I watched a YouTube video where a dev was optimizing unity code to match the size of data that is sent to the cpu using structs just like this.
…or you can be coding assembler - it’s all just bits to me
I mean is it really a waste? What’s minimum amount of bits most CPUs read in one cycle.
In terms of memory usage it’s a waste. But in terms of performance you’re absolutely correct. It’s generally far more efficient to check is a word is 0 than to check if a single bit is zero.
Usually the most effective way is to read and write the same amount of bits as the architecture of the CPU, so for 64 bit CPUs it’s 64 bits at once.