• T0Keh16@feddit.org
    link
    fedilink
    English
    arrow-up
    1
    ·
    edit-2
    4 months ago

    This depends on what properties you want your number system to satisfy. Usually you want for any three numbers a,b,c to satisfy

    1. Associativity of addition: a+(b+c)=(a+b)+c This is quite useful, so we don’t want to give this up

    2. Commutativity of addition: a+b=b+a Also useful but you could get around that if you really want to, but for our purposes let’s keep it

    3. An additive identity (or zero): 0+a=a=a+0 You want a zero, so this is needed

    4. Additive inverses: There exists x such that a+x=0 (here x=-a); you also want this

    5. Associativity of multiplication: a*(bc)=(ab)*c Same as above, you want this property

    6. Commutativity of multiplication: Useful but not necessary

    7. A multiplicative identity (or one): 1a=a=a1 Usually with 1=/=0, also useful

    8. Multplicative inverses for nonzero elements: Not that necessary, there are useful number systems without this (like the integers …,-1,0,1,…)

    9. Distributivity: a(b+c)=ab+ac, (a+b)c=ac+bc You ant this, as it links addition and multiplication and this is quite desirable.

    If you assume 4. and 9., you get 0a = (0+0)a=0a+0a, hence 0=0a. This means that you would have to give up distributivity wihin your number system, however distributivity is what links addition and multiplication together, hence your question would just be “what if we have two binary operations that don’t really interact with each other?” and the answer is: Maybe there are useful cases?

    Edit: I forgot about losing property 4, in which case some examples are found in the following math stackexchange post

  • Zachariah@lemmy.world
    link
    fedilink
    English
    arrow-up
    1
    ·
    4 months ago

    Imagine that you have zero cookies and you split them evenly among zero friends. How many cookies does each person get? See? It doesn’t make sense. And Cookie Monster is sad that there are no cookies, and you are sad that you have no friends.

    • T0Keh16@feddit.org
      link
      fedilink
      English
      arrow-up
      1
      ·
      4 months ago

      To be completely honest, this looks like what I like to refer to as “symbol vomit”. And also, the square root of 0 is just 0, that is the definition you will find almost everywhere, so there is no need for this weird symbol salad. As for the author, I couldn’t find him apart from like two of his books, do you have any more infos on him? Because this looks very non-mathematical apart from the symols.

  • pixelscript@lemm.ee
    link
    fedilink
    English
    arrow-up
    0
    ·
    edit-2
    4 months ago

    This is a question I see from time to time, and it’s a good question to ask.

    Your question as I understand it can be phrased another way as:

    The square root of -1 has no defined answer. So we put a mask on it and pretend that’s the answer. We do math with the masked number and suddenly everything is fine now. Why can’t we do the same thing to division by zero?

    The difference is that, if you try to put a funny mask on the square root of -1 and treat it like a number, nothing breaks, but if you try the same thing with a division by zero, all sorts of things break.

    If you define i = √-1, that is the only thing i can ever be. That specific quantity. You can factor it out of stuff, raise it to that exponent, whatever. And if it is ever convenient to do so, you can always unmask it back into that thing, e.g. i^2 = (√-1)^2 = -1. All the while, all the already existing rules of math stay true.

    A division by zero isn’t like this, because if you tried it, every number divided by zero would equal to the same thing. If we give it a name, say, 1 / 0 = z, then it would also be true that 2 / 0 = z. We could then solve both sides for zero:

    1 / z = 0

    2 / z = 0

    then set them equal:

    1 / z = 2 / z

    then multiply both sides by z:

    1 = 2

    which is a contradiction.

    i doesn’t have this problem.

    • niktemadur@lemmy.worldOP
      link
      fedilink
      English
      arrow-up
      1
      ·
      4 months ago

      Oh man, I knew I had asked this question in the right place.
      Thank you!

      With imaginary numbers, I visualize something like a needle popping up and moving through cartesian space in new directions or dimensions in all sorts of unexpected and intricate ways, and eventually they find utterly extraordinary and elegant things like the Mandelbrot set. So I wondered if there are other “hacks” or “cheats” that open up new types of progressions and behaviors for study.

      Someone else in the thread also mentioned Dirac doing something along the lines of (a)(0) ≠ 0 to handle some of the infinities that pop up in physics.